

UNIVERSITÀ DI PISA

DESTeC | School of Engineering Building Engineering and Architecture 56126 Pisa (Italy)

Institute for Renewable Energy Energy Efficient Buildings 39100 Bozen/Bolzano (Italy)

REHVA Student competition 2023 11th May 2023 - Bruxelles, Belgium

Thermal comfort and indoor air quality in schools: analysis of students' perception and impact of perceived control on satisfaction

Supervisors:

Fabio Fantozzi Giulia Lamberti Francesco Babich **Student:** Giulia Torriani

Academic Year 2021/2022

INTRODUCTION

OVERVIEW

- Addressing thermal comfort and indoor air quality (IAQ) in school buildings is particularly challenging.
- Current thermal comfort standards [1, 2], determine the design values for indoor operative temperatures based on the Predicted Mean Vote (PMV) - Predicted Percentage of Dissatisfied (PPD) model.
- This model is based on the heat exchange between the human body and the environment and does not consider the hypothesis that people can **adapt to their surroundings for achieving comfort**.
- Furthermore, **different perceptions at diverse educational stages** are not considered. At different educational stages, students exhibit different **metabolic rates**, perform **different activities**, and have **different adaptive capacities**.
- Guaranteeing **perceived control** in school buildings seems challenging but relevant as it is a form of **psychological adaptation**: occupants with more means of control think they have more chances to adapt to their surroundings and therefore are less likely to complain of discomfort than those with a lower level of perceived control.

 [1] ISO 7730, "Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria", 2006.
[2] ASHRAE, "Standard 55 - Thermal environmental conditions for human occupancy", 2020.

INTRODUCTION

LITERATURE REVIEW

Database: Scopus

TITLE-ABS-KEY (("thermal comfort" OR "indoor air quality") AND ("school*" OR "educational building*" OR "class" OR "classroom*"))

> 2.713 articles Year : 2002-2022 English

871 articles Subject Area: Engineering Review Articles, Research articles

> **165 articles** Field study

RESEARCH GAP

Investigation of all the educational stages simultaneously and in the same area;

→ This strongly limits the possibility to distinguish between the effects of the educational stage and climate or cultural habits

- Combined effect of IAQ and thermal comfort in schools;
- Impact of **perceived control** on indoor comfort in schools.

OBJECTIVE OF THE WORK

1 Developing a better understanding of students' perception of the **thermal environment** at different **educational stages**.

1.1 Evaluating whether the predictive performance of the **PMV-PPD model** varies with the educational stage.

2 Investigating any possible correlation between the **perceived control** and the students' **thermal comfort** and **perception of IAQ**.

SCHOOL BUILDINGS

- Located within a 14 km distance from Pisa (Italy)

	School	Year	Heating system	Ventilation system	Classes	N° respondents
Primary schools	P1	1970	Central radiator system	Natural ventilation	ID1	111
	P2	2018	Split air system	Mechanical ventilation	ID2, ID3	224
	Р3	1970	Central radiator system	Natural ventilation	ID4, ID5	136
Middle schools	M1	1970	Central radiator system	Natural ventilation	ID6, ID7, ID8, ID9	209
	M2	2020	Central radiator system	Mechanical ventilation	ID10, ID11, ID12, ID13	221
High schools	H1	2018	Central radiator system	Mixed Mode	ID14, ID15	157
University	U1	1936	Central radiator system	Natural ventilation	ID16, ID17, ID18	169
	U2	1970	Central radiator system	Natural ventilation	ID19, ID20	168
	U3	1970	Central radiator system	Natural ventilation	ID21	30
	U4	2015	Central air system	Natural ventilation	ID22	30
	U5	2015	Central air system	Natural ventilation	ID23	93

ENVIRONMENTAL MEASUREMENTS

Physical quantity	Instrument	Range	Accuracy
Indoor air temperature	HP3217R temperature and humidity probe	–40 to 100 °C	± 1/3 DIN
Outdoor air temperature	PCE-HT110 probe	0 to 50 °C	± 0.8 °C
Globe-thermometer temperature	Globe-thermometer TP3275	–30 to 120 °C	±2 °C
Relative humidity	HP3217R temperature and humidity probe	0%-100%	± 1.5%
,	PCE-HT110 probe	10%-90%	± 1%
Air velocity	AP3203 hot-wire anemometer	0.02 to 5 m/s	± (0.05 + 5% of the measure) m/s

- The questions complied with the ASHRAE 55 and ISO 28802 standards [2,3].
- **First section**: age, gender, height, weight, and location occupied in the classroom.
- Second section: clothing insulation based on ISO 9920 [4].
- **Third section**: thermal environment on a 7-point scale -Thermal sensation vote (TSV), Thermal preference vote (TPV), Thermal acceptability vote (TAV).
- Fourth section: perceived control (PC) on a 7-point scale -"How do you evaluate your control of comfort parameters at this moment?"
- Fifth section: air quality perception on a 7-point scale.

[3] ISO 28802, "Ergonomics of the physical environment - Assessment of environments by means of an environment survey involving physical measurements of the environment and subjective responses of people", 2012.

[4] ISO 9920, "Ergonomics of the thermal environment. Estimation of thermal insulation and water vapour resistance of a clothing ensemble", 2009.

DATA PROCESSING

- The indoor operative temperature (T_{op}) and mean radiant temperature (MRT) were calculated according to the ISO 7726 standard [5].
- Clothing insulation (Icl) and PMV-PPD indices were calculated according to the ISO 7730 standard [1].
- The students' **metabolic rate** (Met) was initially estimated to be 1.2 met, based on the ISO 8996 standard [6]. Subsequently, the value was corrected by considering the different body surfaces of each student.
- The **running mean outdoor temperature** (T_{rm}) was calculated from the seven days before the measurements based on EN 16798-1 [7].
- The values of the **environmental parameters** were **combined** with the **subjective responses**.
- The questionnaire sample was divided into **two groups based on the perceived control vote**: students with perceived control (PC>0) and students without perceived control (PC<0).

[1] ISO 7730, "Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria", 2006

[5] ISO 7726, "Ergonomics of the thermal environment - Instrument for measuring physical quantities", 2001.

[6] ISO 8996, "Ergonomics of the thermal environment - Determination of metabolic rate", 2005.

[7] EN 16798-1, "Energy performance of buildings - Ventilation for buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics", 2019.

EVIDENCE OF ADAPTATION - CLOTHING INSULATION

1. Calculation of the clothing insulation I_{cl} (clo) [1]

 $I_{cl} = 0.835 \cdot \Sigma_i I_{cl,i} + 0.161$

- 2. Binning method ($T_{op} = 0.5 \ ^{\circ}C$)
- 3. Weighted linear analysis and regression models

<u>Primary School</u> ($R^2 = 0.70$, p-value<0.05)

<u>Middle School</u> ($R^2 = 0.55$, p-value<0.05)

<u>High School</u> ($R^2 = 0.88$, p-value<0.05)

<u>University</u> ($R^2 = 0.34$, p-value<0.05)

 $I_{cl} = -0.0056 \cdot T_{op} + 1.0421$

 $I_{cl} = -0.0193 \cdot T_{op} + 1.2165$

 $I_{cl} = -0.0136 \cdot T_{op} + 1.0718$

 $I_{cl} = -0.0215 \cdot T_{op} + 1.3862$

EVIDENCE OF ADAPTATION - WINDOW OPERATION

Logistic regression analysis: probability that windows are opened $(p_c[0-1])$

Logit
$$(p_c) = \ln(p_c) - \ln(1-p_c) = \ln(p_c/(1-p_c)) = c + d \cdot T$$

 $P_{c} = (\exp(c+d \cdot T))/(1+\exp(c+d \cdot T))$

80

NEUTRAL, PREFERRED, AND ACCEPTABLE TEMPERATURES

1. Binning method ($T_{op} = 0.5 \ ^{\circ}C$)

1. Weighted linear and polynomial analysis - regression models

Neutral temperature (°C)20.6Preferred temperature (°C)18.5Acceptable temperature (°C)21.9

Primary school	Middle school	High school	University
20.6	21.7	23.1	23.6
18.5	21.8	23.0	24.1
) 21.9	21.2	22.2	25.0

NEUTRAL TEMPERATURE AND STUDENTS' AGE

1. Deriving neutral temperature for each of the 1548 sample

 $T_{neutral} = T_{op} + TSV/G$ (G = 0.5 °C⁻¹ Griffiths' costant)

- 2. Binning method ($T_{neutral} = 0.5 \ ^{\circ}C$)
- 3. Weighted linear analysis and regression models

T_{neutral}= 0.1139 · Age + 20.5146

R² = 0.60 P-value<0.05

PREDICTIVE PERFORMANCE OF PMV-PPD MODEL

1. Correcting the metabolic rate by considering the different body surfaces of each student [5]

 $Met_{corrected} = Met_{ISO 8996} \cdot (A_{Adult} / A_{student}) = 1.2 met \cdot (1.8 m^2 / A_{student})$

2. Calculating the PMV [1]

 $PMV = f(metabolic rate, clothing insulation, T_a, RH, V_a, MRT)$

[1] ISO 7730, "Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria", 2006.

[5] ISO 8996, "Ergonomics of the thermal environment - Determination of metabolic rate", 2005.

PREDICTIVE PERFORMANCE OF PMV-PPD MODEL

3. Comparing the PMV with the TSV

Indoor operative temperature, T_{op} (°C)

IMPACT OF PERCEIVED CONTROL ON THERMAL COMFORT

1. Binning method ($T_{op} = 0.5 \ ^{\circ}C$)

2. Thermal sensation - linear regression analysis

With perceived control $TSV = 0.25 \cdot T_{op} - 5.58$
 $(R^2 = 0.82, p-value<0.05)$ $T_{neutral} = 21.7 \ ^\circ C$ Without perceived
control $TSV = 0.32 \cdot T_{op} - 7.13$
 $(R^2 = 0.88, p-value<0.05)$ $T_{neutral} = 22.3 \ ^\circ C$

3. Thermal acceptability - polinomial regression analysis

IMPACT OF PERCEIVED CONTROL ON IAQ

- 1. Binning method ($T_{op} = 0.5 \text{ °C}$)
- 2. IAQ- T_{op} linear regression analysis

With perceived control

Without perceived

control

$$|AQV = -0.16 \cdot T_{op} + 4.34 (R^2 = 0.45, p-value < 0.05)$$
$$|AQV = -0.12 \cdot T_{op} + 2.49 (R^2 = 0.29, p-value < 0.05)$$

2. IAQ- CO_2 linear regression analysis

No strong correlation between the two parameters $(R^2 < 0.1, p-value=0.9)$

CONCLUSIONS

- This is the first study that involves **all educational stages** (from primary schools to universities) under the same period and geographical area.
- Furthermore, this is the first work investigating the **impact of perceived control** on indoor comfort in school buildings.
- The ability to **adapt** to the environment **increases with the educational stage**.
- Neutral, preferred, and acceptable temperatures increase with students' age (e.g. the neutral temperature increases by 1 °C on average at every educational stage).
- **Current comfort standards**, which are based on the PMV-PPD method, **are not accurate** in predicting the thermal sensations of students, and correcting the metabolic rate is insufficient .
- In winter, the neutral operative temperatures of students with perceived control are lower than those of the students without perceived control. (→ energy savings)
- Subjects with perceived control are also more satisfied with IAQ than subjects without perceived control.

More information:

- Torriani, G., Lamberti, G., Fantozzi, F., & Babich, F. (2023). **Exploring the impact of perceived control on thermal comfort and indoor air quality perception in schools**. *Journal of Building Engineering*, 63, 105419.
- Torriani, G., Lamberti, G., Salvadori, G., Fantozzi, F., & Babich, F. (2023). Thermal comfort and adaptive capacities: Differences among students at various school stages. *Building and Environment*, 110340.

Università di Pisa

DESTeC | School of Engineering Building Engineering and Architecture 56126 Pisa (Italy)

Institute for Renewable Energy Energy Efficient Buildings 39100 Bozen/Bolzano (Italy)

Thank you for your attention