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Why we need to change?
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@®@Peters_Glen ¢ Data: Global Carbon Budget, IPCC AR6 WG1 Table SPM.2, own calculations [1]

[1] Elaboration of IPCC results by Glen Peters, 2021. [2] IPCC 2021 report https://www.ipcc.ch/report/ar6/wgl/downloads/report/IPCC_AR6_WGI_SPM.pdf
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Why the energy sector?

The majority of the GHG emissions
globally comes from the energy sector.

Global greenhouse gas emissions by sector

This is shown for the year 2016 — global greenhouse gas emissions were 49.4 billion lonnes CO,eq.
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OurWorldinData.org - Research and data to make progress against the world's largest problems.
Source: Climate Watch, the Waorld Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

[3] Emissions by sector, OurWorldInData. https://ourworldindata.org/emissions-by-sector
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Energy system modelling

Definition:

It is the process of building computer
models of energy systems in order to
analyze them and inspect future
scenarios.

Scope [4]:

* to provide orientation and material
for discussion about energy futures

* to support decision makers in
developing short and long-term
strategies in energy sectors

[4] Cao K-K et al. Raising awareness in model-based energy scenario studies—a transparency checklist, [5] picture: https://www.en.plan.aau.dk/research+groups/SEP/
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Bottom-up versus Top-down approach

Bottom-up Top-down
Developed and * Engineers * Economists
. Natural Scientists * Public administrations
used by . Energy supply companies
Scope To inspect best technology options for a future energy system To test a certain energy policy and evaluate its future impacts
(macro-economic, environmental, societal)
Type Simulation model, Optimization model Macroeconomic model
Advantages and + High degree of technological detail (Timestep: hour) + Application of feed-back loops to walefare, employment and
limitations - Heavily dependent on data availability and credibility social growth
- Lack of technological detail (Timestep: year)
Examples - energyPLAN - PRIMES
- MARKAL/TIMES - ENPEP-BALANCE
REMod-d - MARKAL/TIMES (partly)
LEAP
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Problem in bottom-up energy system modelling

Total annual 4
Single optimum method costs [Mé€]
Energy system models typically provide a single .
optimal best solution to policy makers
e Large infrastructure projects g o
. . . CO2 emissions
visual impact (Mt]
e land-use conflicts Total annual 4
* problematic concentration of renewables in single costs [M€]
regions °
are all political implications which are difficult to be ® .
qguantified in energy system models [7].
These implications could justify a policy-makers choice C(;Z emissions
towards a solution which is slightly more cost expensive [Mt]

than the unique optimal one.
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How to go beyond the single optimum method?

Scope of my PhD and research activity: to go beyond the ”single optimum
method” with the aim to better support and guide policy makers in the selection
of the best future alternatives of the energy system from a techno-economic

point of view.

[7] Neumann F, Brown T. The near-optimal feasible space of a renewable power system model. 2021
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How to go beyond the single optimum method?
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[7] Neumann F, Brown T. The near-optimal feasible space of a renewable power system model. 2021
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EPLANoOpt

Model n objectives - Eurac Research

Simulation model Optimization model
Energy ey = @ python
EnergyPLAN Multi objective

(Aalborg evolutionary
University) algorithm MOEA

Each point on the chart shows total
costs and CO, emissions per each
combination of technologies of the
energy system.
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For each combination of technologies
of the energy system, hourly energy
production and consumption have
been simulated.

[8] Prina et al. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. 2018
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7
EPLANopt: results for South Tyrol :
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[8] Prina et al. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. 2018
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EPLANopt: results for Niederosterreich

Baseline Advanced scenario
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[10] Prina et al. EPLANopt optimization model based on EnergyPLAN applied at regional level: the future competition on excess electricity production from

renewables. 2020
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Relevance for EUREGIO

[10] EPLANopt, 2016.

https://github.com/matpri/EPLANoptMAC
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Case study

Journal
South Tyrol .
article
Bressanone- Journal
Brixen article
Journal
Ital .
Y articles
. . Journal
Niederosterreich .
article
Salzburg Final report
Study in
Tyrol phase of
evaluation

Title

Multi-objective optimization algorithm coupled to EnergyPLAN software: The
EPLANopt model

Smart energy systems applied at urban level: The case of the municipality of
Bressanone-Brixen

i) Transition pathways optimization methodology through EnergyPLAN
software for long-term energy planning
ii) Electrification of transport and residential heating sectors in support of
renewable penetration: Scenarios for the Italian energy system
iiii) Multi-objective optimization model EPLANopt for energy transition
analysis and comparison with climate-change scenarios

EPLANopt optimization model based on EnergyPLAN applied at regional level:
The future competition on excess electricity production from renewables

In progress

In progress

2018

2016

2018-2021

2020

2020-2021

2020-

In energy system modelling an added value is certainly transparency. The codes of the developed
models are open to everyone (on Gitlab/Github) and available on different repositories: EPLANopt
[10], Oemof-moea [11], EPLANoptMAC [12].

. [11] Oemof-moea, 2019

. [12] EPLANoptMAC, 2021
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https://gitlab.inf.unibz.it/URS/EPLANopt
https://github.com/matpri/oemof-moea

Next steps

The creation of a model for the whole EUREGIO based on the multi-node tool Oemof-moea to study the beneficial

exchanges of energy flows between regions.

Final aim:

The results of this study support policy
makers in the definition of a shared energy
strategy 2050 for EUREGIO.

Piano energetico

Tirol 2050 Klimaplan 2050 ambientale
(Tyrol) (South Tyrol) ~ (Trentino)

KLIMAPLAN

"
Shared energy strategy 2050
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Thank you
for your attention

M. G. Prina
Matteogiacomo.prina@eurac.edu
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