

AUTONOME

SÜDTIROL

PROVINZ

BOZEN

EUROPEAN UNION

Energy sector coupling: electric-thermal interaction through heat pumps

eurac Tuesday 23th of October 2018 research – Institute for Renewable Energy NOI Tech Park, via A. Volta 13/A, Bolzano

PROVINCIA

AUTONOMA

DI BOLZANO

ALTO ADIGE

This workshop has received funding from the EFRE- FESR 2014- 2020 programme- project "INTEGRIDS" n. 1042

Workshop "Energy sector coupling: electric-thermal interaction through heat pumps"

23rd October 2018

NOI Techpark Südtirol/Alto Adige Via A. Volta, 13 - Italy - 39100 Bolzano

How heat pumps may be leveraged in the management of smart grids

Ph.D. Eng. Massimiliano Scarpa <u>massimiliano.scarpa@iuav.it</u> V

IUAV - Main activities about smart grids

- Development/application of simulation codes and programs about building management strategies for heating/cooling systems fed by heat pumps...
 - ✓ ... with/without photovoltaic systems
 - ✓ ... with/without electricity storage units
 - ✓ ... with various smart grid coordination strategies (demand response, dayahead and real-time tariffs, ...)
 - \checkmark ... with focus both on the energy and economical perspectives
- □ 2 research activities as examples of IUAV activity in this field:
 - 1. Control of heat pump systems based on dynamic electricity tariffs
 - 2. Behaviour of battery-supported residential PV systems connected to smart grids, with a special focus on the interface with electricity distributors

BOUNDARY CONDITIONS FOR THE ANALYSES PERFORMED

Main background conditions

- Dynamic electricity tariffs extended to residential consumers
 Conventional HVAC system consisting of:
 - ✓ Heat pump
 - ✓ Heat storages
 - ✓ Low-inertia HVAC terminal units such as fan coils
- **Typical medium apartment building:**
 - 8 apartments (at first + second floor) + garages and warehouses (at the ground floor)
 - ✓ Heated volume: 2715 m³
 - ✓ Occupancy: 0.025 people/m²
 - ✓ Lighting + electric appliances:
 - Maximum intensity: 8 W/m²
 - Daily energy: 84 Wh/(m²·d)
 - ✓ Infiltration+Ventilation:
 - Garages and warehouses: 0.5 1/h, constant
 - Apartments: 0.3 1/h, constant
 - ✓ DHW: 50 l/(person d) at 45°C
 - Design capacity:
 - Heating: 18.4 kW
 - Cooling: 21.1 kW
- **Site:**
 - ✓ City: Milan
 - ✓ Weather data: actual, for years 2012 and 2013
- Simulation procedure based on the superposition of:
 - the building envelope simulation (by means of building energy simulation software EnergyPlus)
 - the building system simulation (by means of NXT, a proprietary software developed at Università IUAV di Venezia, in C++)

Control of heat pump systems based on dynamic electricity tariffs

RESEARCH ACTIVITY 1

Introduction

Object:

- ✓ 3 heat pump control strategies are applied, whose action is based on:
 - the cost of electricity
 - on the level of the local electricity generation from photovoltaics
- Electricity price:
 - ✓ Actual hourly electricity prices in 2012 and 2013 + additional costs
- ❑ Possible side effects may consist in comfort issues → Definition of parameter "IPRL" (Index of Prompt Response-to-Load), defined as the ratio of the amount of heating/cooling loads postponed during the year (cumulated hour by hour, along the whole year) to the total heating/cooling loads.

The HVAC system

□ The HVAC system consists of:

- ✓ Inverter-driven heat pump, in 2 sizing levels:
 - **100%**
 - **125%**
- ✓ Water heat storage unit aimed at DHW supply:
 - It contains the DHW ready for use (heated by the heat pump and pre-heated by the solar thermal loop)
 - Size in two levels:
 - o 50 l/person
 - \circ 100 l/person

✓ Water heat storage for space heating/cooling:

- Size in two levels:
 - o 20 l/kW_{HPNominalCapacity}
 - O 40 I/kW_{HPNominalCapacity}

The RES systems

PV system:

- ✓ Layout: integration onto the gable roof, on the side facing South.
- ✓ Size: about 8 kW_p
- Note: in this paper, it is intended to serve just the heat pump. In particular, it is sized to provide about 75% of the electricity yearly needed by the heat pump.
- □ Solar thermal system:
 - ✓ Size: covering 70% of DHW yearly energy needs

Control strategies

Simulated control strategies:

- Reference: it switches on/off the heat pump only based on the temperatures within the thermal storages through an on-off command with 5 K hysteresis.
- ✓ Type A: the heat pump is switched on/off based on the current price of the electricity
- Type B: the heat pump is switched on/off based on the ratio of the current price of the electricity to the maximum price forecast within the following 12 hours
- ✓ Type C: the heat pump is switched on when:
 - the PV system is generating electricity
 - the PV system is not generating electricity and the HVAC system is requiring more than 15% of the heat pump nominal capacity
- In addition, the controller makes the heat pump to switch on when the water heat storage temperatures get too far (5 K) from the set-point supply temperatures.

Results

□ Yearly electricity consumption and generation:

- ✓ Strategy Type C achieves the best performance in heating and DHW preparation, because of its high operation frequency during midday hours.
- No significant variation of the energy consumption consequent to heat pump and water heat storage sizes
 Focus on 40 l/kW_{HP}

 Imported/exported electricity:
- Type C achieves a smaller fraction of exported and imported electricity
 Type A, Type B, and Type C do not imply delays in heating/cooling supply, since they charge the water heat storages even when it is not strictly needed. Best: Type B.

Costs:

✓ Type C achieves the highest cost savings

Conclusions

Proper control strategies make it possible to achieve relevant money savings and high degrees of energy self-consumption.
 Simultaneously, they may ensure good comfort levels.
 In particular, the best results were achieved by means of strategy Type C.

Behaviour of battery-supported residential PV systems connected to smart grids, with a special focus on the interface with electricity distributors.

RESEARCH ACTIVITY 2

Introduction

Object:

- Two predictive control strategies managing the charge of the electrochemical storage unit, in comparison with the conventional control strategy.
- Parametric analysis on various combinations of photovoltaic system and battery pack sizes.
- □ To estimate the effects in terms of grid imbalance:
 - ✓ Quadratic imbalance coefficient, k_Q, equal to the quadratic imbalance between the building and the smart grid.

The PV system

□ Ranges of PV peak power and battery pack size in the PV system parametric analysis → 43 combinations

The PV system serves the building's electricity needs as a whole
 Electrochemical storage units consist in Li-Ion cells

	Installed peak power of PV modules		Battery pack capacity	
Step	Step	Installed peak power [kW] (%, referred	Step	Capacity [kWh] (%, referred to the
	code	to the reference size, equal to 37.8 kW)	code	reference size, equal to 37.8 kWh)
0	PV0	0.0 (0%)	BP0	0.0 (0%)
1	PV1	9.5 (25%)	BP1	18.9 (50%)
2	PV2	18.9 (50%)	BP2	37.8 (100%)
3	PV3	28.4 (75%)	BP3	56.7 (150%)
4	PV4	37.8 (100%)	BP4	75.6 (200%)
5	PV5	47.3 (125%)	BP5	94.5 (250%)
6	PV6	56.8 (150%)	BP6	113.4 (300%)

Control strategies

□ Simulated control strategies:

- ✓ Strategy 0: conventional battery charge control strategy
- Strategy 1 and Strategy 2 use algorithms predicting possible profiles of electricity import/export in the next 24 hours, by means of simplified simulation of the energy flows involved in PV system operation, starting from the following data:
 - The hourly building's electricity consumption profile taking place in the previous 24 hours (P_{Needs,-h}).
 - The hourly profile of solar radiation level expected in the next 24 hours (PSun,-h).
 - The current state of charge of the battery pack (C_{BP,t=0}).
 - In particular:
 - Strategy 1 assumes a daily constant proportion between the share of electricity sent to the grid and the surplus electricity simultaneously generated by the PV modules.
 - Strategy 2 considers a constant value of the maximum export power during the next 24 hours, thus achieving a flat export profile.

Results

- Yearly shares of electricity sent to the building by the PV system as a whole and by the battery pack alone
- Differences in yearly shares of exported electricity, in terms of percentage of yearly electricity needs and in terms of percentage of the counterpart value resulting from control strategy 0.
- Detailed statistics about the interface between the building and the national grid:
 - ✓ Frequency of occurrence of exported and imported power ranges, in terms of percentage of P_{Needs,Max}:
 - The control strategies influence mainly the exported power
- Detailed statistics about the interface between the building and the national grid:
 - ✓ Yearly quadratic effective imbalance coefficient for every configuration.
 - Lower values of the yearly quadratic effective imbalance coefficient would be achieved in case of PV system sized for 75% of the yearly energy needs.

Conclusions

- By the proposed control strategies, the frequencies of occurrence of high values of exported electricity may be decreased by almost 100%, whereas medium-high values of exported electricity by 50%.
- Both of the control strategies are shown to be able to lower the yearly quadratic effective imbalance coefficient by around 15% in case of PV systems sized for Zero Energy Buildings (ZEBs), thus showing opportunities in the mitigation of electricity grid stresses from PV systems.
- The share of energy self-consumption may be increased by about 30% by means of medium-large battery packs.

THANK YOU FOR YOUR KIND ATTENTION

More details in:

- Luigi Schibuola, Massimiliano Scarpa, Chiara Tambani, Demand response management by means of heat pumps controlled via real time pricing, Energy and Buildings, Volume 90, 2015, Pages 15-28, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2014.12.047.
- Luigi Schibuola, Massimiliano Scarpa, Chiara Tambani, Influence of charge control strategies on electricity import/export in battery-supported photovoltaic systems, Renewable Energy, Volume 113, 2017, Pages 312-328, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2017.05.089.