

AUTONOME

SÜDTIROL

PROVINZ

BOZEN

EUROPEAN UNION

Energy sector coupling: electric-thermal interaction through heat pumps

eurac Tuesday 23th of October 2018 research – Institute for Renewable Energy NOI Tech Park, via A. Volta 13/A, Bolzano

PROVINCIA

AUTONOMA

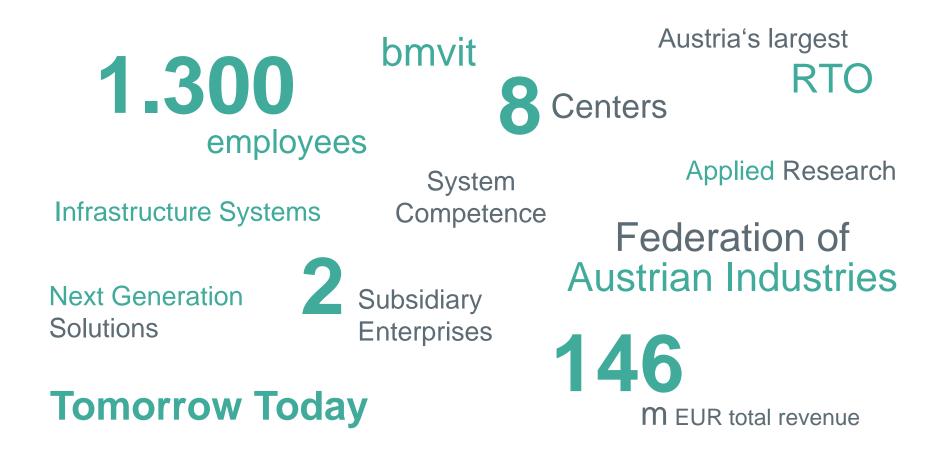
DI BOLZANO

ALTO ADIGE

This workshop has received funding from the EFRE- FESR 2014- 2020 programme- project "INTEGRIDS" n. 1042

ELECTRICITY-MARKET PARTICIPATION OF HEAT PUMPS IN SINGLE FAMILY HOUSES AND DISTRICT HEATING NETWORKS

Workshop


"Energy sector coupling: electric-thermal interaction through heat pumps"

23 October 2018, Bozen/Bolzano

Johanna Spreitzhofer

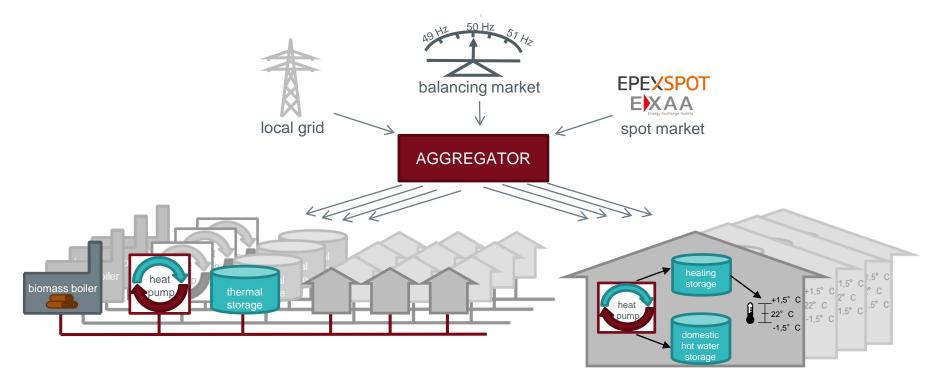
AIT Austrian Institute of Technology GmbH Giefinggasse 6 | 1210 Vienna | Austria T +43 50550 6352 | M +43 664 88256109 johanna.spreitzhofer@ait.ac.at | http://www.ait.ac.at

TOPICS

• Overview: Heat pump pooling for electricity markets

- Heat pumps in district heating networks
 - Balancing markets + Day-ahead spot market (project fit4power2heat)

- Heat pumps in single family houses
 - Balancing market (project DeCAS)
 - Day-ahead spot market (project iWPP-Flex/Annex 42)



OVERVIEW: HEAT PUMP POOLING FOR ELECTRICITY MARKETS

HEAT PUMP POOLING

- Joint operation of a large number of heat pumps (HPs) instead of local optimization
- Better performance than in separate operation, by using resulting flexibility of HPs with thermal storage systems for market and grid purpose
- Heat pumps can be either in district heating networks or single family homes

TYPICAL APPLICATIONS FOR FLEXIBILITY

Market	 Cost minimization through Day-ahead and Intraday market Additional revenues through Balancing Energy / Frequency Restoration Reserve Minimization of the imbalance settlement costs of the balancing group 				
Customer	 Minimization of the grid connection costs through curtailment Maximization of own consumption (e.g. with additional PV) Connection at a lower grid level through reducing connection power 				
Electricity distribution grid	 Increase of security of supply through local grid support in case of outages Reduction of grid reinforcement costs for the distributionn grid operator / delay of grid reinforcements 				

PARTICIPATION OF HEAT PUMPS IN THE DAY-AHEAD SPOT MARKET

- Prices are available day-ahead
- Heat pumps can reduce their electricity costs, either via a local control or with an aggregator
- In Austria/Germany:

Advantage of the day-ahead market for heat pumps

- + Low technical requirements for the market participation
- + No bidirectional communication necesses ary for the market participation
 → easy to implement

Disadvantage of the day-ahead market for heat pumps

- Higher prices expected for the future \rightarrow lower profitability for heat pumps
- Lower revenues than in other markets due to smaller price difference between high and low price

PARTICIPATION OF HEAT PUMPS IN THE INTRADAY SPOT MARKET

- Continuous trading until 15 min before delivery
- Heat pumps can reduce their electricity costs with an aggregator
- In Austria/Germany:

EPEXSPOT

Advantage of the intraday market for heat pumps

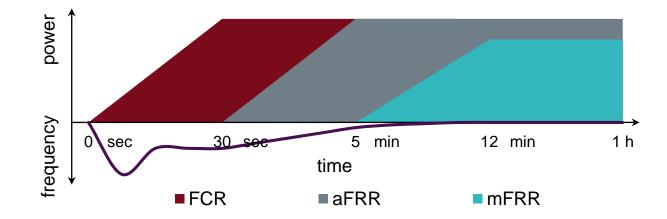
- + Higher price spread than for the day-ahead market
- + Closer to real-time \rightarrow Better forecast of the heat load, weather etc. available

Disadvantage of the intraday market for heat pumps

- Higher technical requriements; participation only possible via an aggregator
- Bidirectional communication is very likely needed

OVERVIEW BALANCING ENERGY

Balancing energy is used by the electricity transmission grid operator in case of imbalances between electricity production and consumption

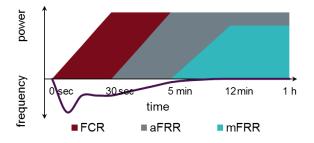

Balancing products in Austria/Germany:

- Frequency Containment Reserve (FCR)
- automatic Frequency Restoration Reserve (aFRR)
- manual Frequency Restoration Reserve (mFRR)

consumers producers

Two types of balancing energy:

- Positive balancing energy = increase in electricity production / decrease in electricity consumption
- Negative balancing energy = decrease in electricity production / increase in electricity consumption


PARTICIPATION OF HEAT PUMPS IN THE BALANCING MARKETS

Advantage of the balancing markets for heat pumps

- + Heat pumps can earn revenues by providing balancing energy
- + Both the availability and the delivery are remunerated (power & energy price)
- + Additionally HPs can save some grid fees during the times where they provide balancing energy

Disadvantage of the balancing markets for heat pumps

- Prequalification process necessary
- Strict technical requirements for the market participation
 - Bidirectional communication necessary
 - Fast reaction times: a few seconds / a few minutes
 - Product size: 4 h (secondary, tertiary) / 1 week (primary)
 - Minimum pool size: 1 MW / 5 MW
- Frequent switchings \rightarrow modulating heat pump / large pool necessary

HEAT PUMPS IN DISTRICT HEATING NETWORKS

Balancing markets + Day-ahead spot market (project fit4power2heat)

EPEXSPOT

EXAA

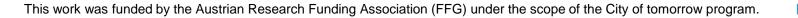
spot market

PROJECT: FIT4POWER2HEAT

Business models for heat pump pooling concepts in small heating networks

• Heat pump integration in existing old and inefficient district heating networks

local grid

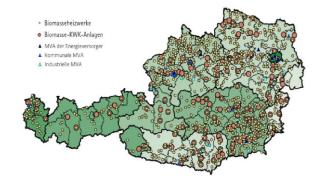

50 Hz

balancing market

controller

thermal

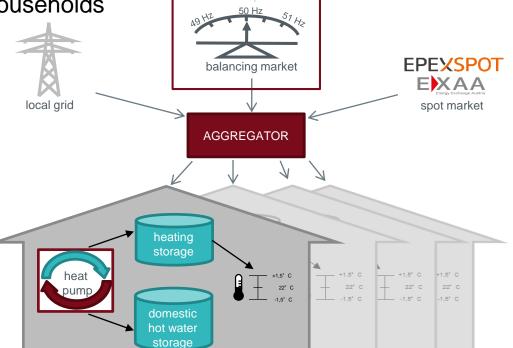
- Use the flexibility provided by:
 - Thermal storage
 - Back-up biomass boiler
- Participate in electricity markets:
 - Day-ahead spot market
 - Balancing markets
- Aim: Investigate potential business models


biomass boiler

BACKGROUND

- Austrian district heating (DH) network settings:
 - 900 biomass heat plants above 1 MW with a total of 2.600 MW_{th}
 - old heat plants operating with low efficiency
 - highly replicable business case
- Power to heat solutions:
 - Heat pumps support both electricity and DH networks.
- Project partner:

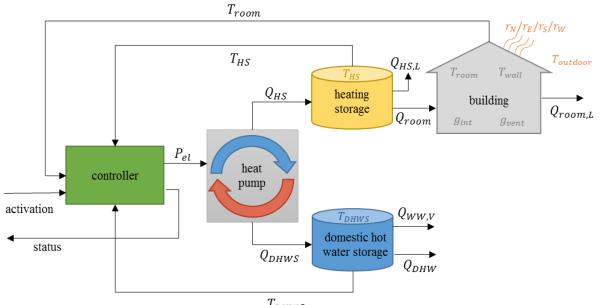
HEAT PUMPS IN SINGLE FAMILY HOUSES Balancing market (project DeCAS)


PROJECT: DECAS

Pooling concept on the example of the Austrian balancing market

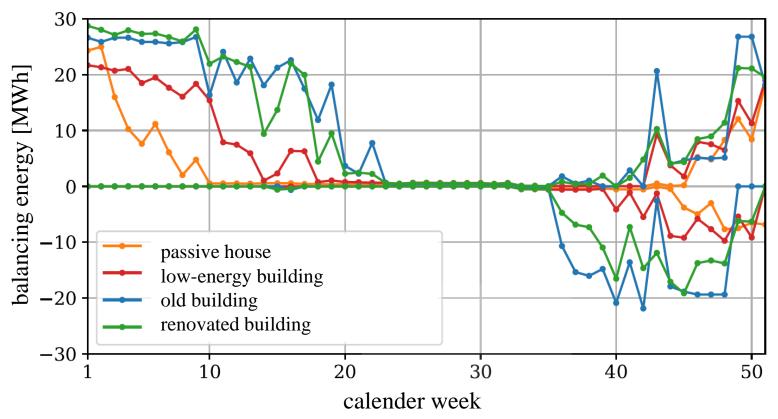
- Facilitate market participation of households
- Use the flexibility provided by:
 - Heating storage
 - Domestic hot water storage
 - Building
- Participate in electricity markets:
 - Balancing market (mFRR)

This project has received funding in the framework of the joint programming initiative ERA-Net Smart Grids Plus, with support from the European Union's Horizon 2020 research and innovation programme.

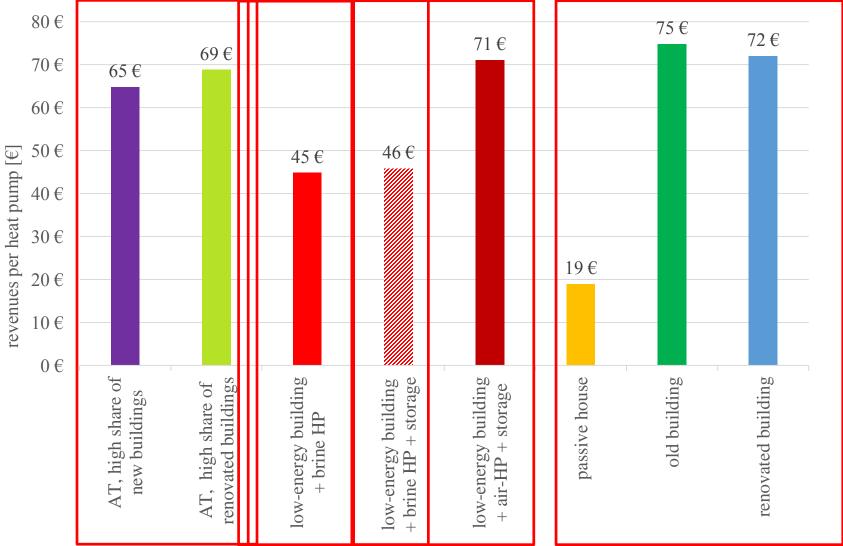


METHODOLOGY

- Pool of 400 single-family houses •
- Linear bottom-up optimization model ٠
- Start: detailed thermal models in Dymola •
- Four types of buildings: passive house, low-energy building, old building, ٠ renovated building
- Linearization and simplification of the building, storage and heat pump models •


TYPICAL THERMAL SYSTEM CONFIGURATIONS FOR AUSTRIA

	passive house	low-energy building	low-energy building	old building	renovated building
Space Heating	15 kWh/(m²*a) [~30 ° C]	45 kWh/(m²*a) [~35 °C]	45 kWh/(m²*a) [~35 °C]	100 kWh/(m²*a) [~55 °C]	70 kWh/(m²*a) [~45 °C]
Heated area	140 m²	140 m²	140 m²	120 m²	120 m²
DHW	3000 kWh/a [~55 °C]	3000 kWh/a [~55 °C]	3000 kWh/a [~55 °C]	3000 kWh/a [~55 °C]	3000 kWh/a [~55 °C]
Therm./ el. capacity	3 kW / 1 kW	5 kW / 1.5 kW	5 kW / 1.2 kW	12 kW / 4 kW	7 kW / 2.7 kW
Capacity control	variabel	on/off	on/off	on/off	variabel
Heat Source	Air	Air	Ground	Ground	Air
Heat Sink	Water	Water	Water	Water	Water
Heat Distribution	Floor Heating	Floor Heating	Floor Heating	Radiators	Radiators
Storage SH	no	300 I	no	500 I	500 I
Storage DHW	300 I	300 I	300 I	300 I	300 I


RESULTS: COMPARISION OF BUILDING TYPES

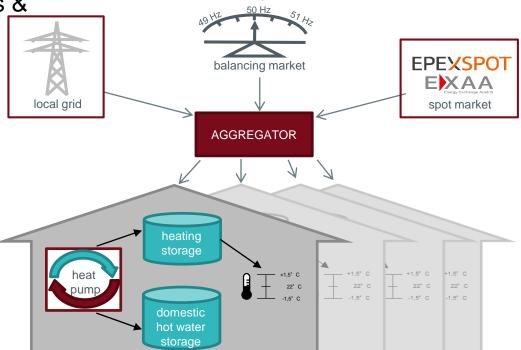
balancing energy provided by the whole pool

RESULTS: YEA<u>RLY REVENUES PER HEAT PUMP</u>

CONCLUSIONS

- Heat pumps in single-family houses can provide balancing energy for 4-8 hours
 - mFRR possible in Austria
 - aFRR possible in Austria since 07/2018
- At average yearly revenues of 65-69€ for Austria
- Old buildings with a high heat load, as well as new buildings with air-to-water heat pumps have the highest potential
- Low-priced IT infrastructure for communication and control is necessary for a positive business case
- Open questions:
 - Impact of catch-up effects
 - Impact on the efficiency and the life cycle of the heat pumps

HEAT PUMPS IN SINGLE FAMILY HOUSES Day-ahead spot market (project iWPP-Flex/Annex 42)

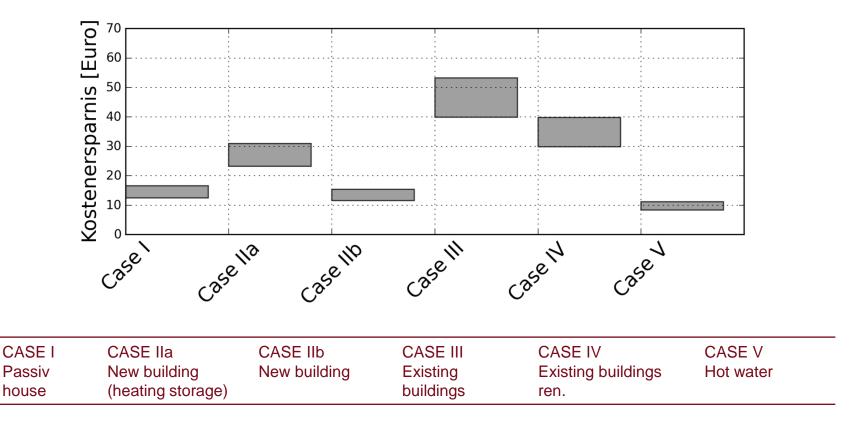


PROJECT: IWPP-FLEX / ANNEX 42

Heat pump participation in the Day-ahead spot market

- Profit from cheap electricity prices & avoid price peaks
- Use the flexibility provided by:
 - Heating storage
 - Domestic hot water storage
 - Building
- Participate in electricity markets:
 - Day-ahead spot market
- Aims:
 - Calculate saved heating costs for households
 - Evaluate influence on the distribution grid

This project has received funding in the framework of the joint programming initiative ERA-Net Smart Grids Plus, with support from the European Union's Horizon 2020 research and innovation programme.



RESULTS DAY-AHEAD SPOT PRICE (2015)

Simulation of supplier view: Optimization of heat pump pool on historic hourly day-ahead spot market prices

CONCLUSIONS

 Economic potential on the day-ahead spot market: 10 – 50 € costs savings per heating heat pump and per year (23 – 35% of energy costs (only energy, not taxes or grid tariffs))

Influence on results:

- Thermal storage of heat pump system and building
- Flex-availability differs depending on season of the year
- Heating heat pump higher potential than hot water heat pump
- Possibly negative influence on the local distribution grid:
 - Higher simultaneity through coordinated activation
 - Grid problems possible in weak grid parts
 - In the simulated grids, only high shares of heat pumps would lead to problems

ELECTRICITY-MARKET PARTICIPATION OF HEAT PUMPS IN SINGLE FAMILY HOUSES AND DISTRICT HEATING NETWORKS

Workshop

"Energy sector coupling: electric-thermal interaction through heat pumps"

23 October 2018, Bozen/Bolzano

Johanna Spreitzhofer

AIT Austrian Institute of Technology GmbH Giefinggasse 6 | 1210 Vienna | Austria T +43 50550 6352 | M +43 664 88256109 johanna.spreitzhofer@ait.ac.at | http://www.ait.ac.at