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Executive summary

Questo report descrive come modelli di previsione di generazione di impianti fotovoltaici
possano essere utilizzati per valutare I'osservabilita della rete in termini di sbilanciamenti
energetici tra domanda e generazione. In particolare, attualmente la grande variabilita di fonti
rinnovabili quali il fotovoltaico e I'eolico dipendono dalle condizioni meteorologiche oltre che
dal posizionamento. In questo studio si & studiato I'impatto della generazione solare nella rete
di distribuzione dal punto di vista di accuratezza ed incertezza della previsione del giorno prima.
In questo contesto, una maggiore osservabilita della rete in termini di generazione, implica una
riduzione degli shilanciamenti e minori riserve che dovrebbero essere mantenute per il giorno
successivo alfine di compensare lo squilibrio e stabilizzare la tensione e la frequenza di rete. Lo
studio e stato effettuato su un’area della regione Alto Adige sotto il controllo di un DSO locale
utilizzando dati di generazione di carico e fotovoltaico con una granularita di un’ora e riferiti al
2015. Questi i principali risultati dello studio.

In assenza di generazione FV, la domanda elettrica pu0 essere prevista con una precisione
accettabile anche con un semplice metodo statistico basato su dati storici. Pertanto, questo
metodo genera valori ragionevoli di squilibrio e riserve. In particolare, il metodo statistico e un
approccio probabilistico piu sofisticato (che ci rende piu precisi nella previsione del fotovoltaico)
mostrano un vantaggio alternativo. Il primo ottiene una stima di riserva successiva piu affidabile
(vale a dire unrischio inferiore al previsto) e una minore necessita di riserve di rampa. Il secondo
raggiunge uno squilibrio piu basso e le seguenti riserve. Anche con solo il 7% della penetrazione
del fotovoltaico, lo squilibrio e le riserve previsti dal metodo di previsione statistica aumentano
considerevolmente a causa della generazione solare. Contenere squilibri e riserve I'uso
dell'approccio probabilistico ha fornito vantaggi ragionevoli. Riduce lo squilibrio del 24% e le
seguenti riserve del 32%. Tuttavia, anche in questo caso, il modello probabilistico & leggermente
meno affidabile e impone I'uso di riserve di rampe piu elevate rispetto all'approccio statistico.
A un livello piu alto di penetrazione del fotovoltaico, I'uso di modelli PV e di carico netto piu
accurati diventa essenziale per limitare squilibri e riserve. In effetti, con la crescita della
penetrazione solare, lo squilibrio e le riserve ottenute con I'approccio statistico aumentano
notevolmente. In questo caso, I'approccio probabilistico sara sempre il metodo migliore sia in
termini di squilibrio, a seguito dell'affidabilita delle riserve, dell'ammontare delle riserve e delle
rampe.

Nella parte conclusiva del report viene introdotto il concetto di osservabilita della rete elettrica
relativamente al problema della stima dello stato e di come questi due concetti sono
fondamentali per la buona operativita e controllo della rete. Vengono introdotte anche in forma
prospettica le misure sincronizzate per le smart grid e come queste associate ad inverte
fotovoltaici possano migliorare sia I'osservabilita che I'accuratezza della stima dello stato.



FESR 2014-2020 - INTEGRIDS Deliverable D6.1

1 Introduction

Variable renewable energy generation (VG) as wind and solar, depends on meteorological
conditions and at the moment cannot be controlled. From the point of view of observability of
regional consumption, the VG acts as lack of energy need modifying the profile of the electric
demand (load). In presence of VG, not the load but only the residual load (net load) can be
observed. This phenomenon is known as load shadowing effect. Therefore, VG introduces in the
electric demand a dependence on the solar and wind availability so that it becomes more and
more intermittent and hardly predictable.

Error! Reference source not found. shows the changes of the monthly average daily profile of
the net load with respect to the electric demand induced by the solar power production. It can
be observed how the PV generation can completely modify the daily load profile, even at this
level of penetration. In particular, it removes the load peak during summer and increase the
daily power ramps in the morning and in the afternoon during the others seasons.
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Figure 1: monthly average of the daily of the load, net load and PV generation of region in the North of Italy during
the year 2015.

The variability of the load is related to the actions of consumers in the grid, the variation in
demand is smooth and the occurrences of a sudden significant change is negligible so that the
statistical behaviour of the load can be easily understood. Therefore, the load prediction (from
minute to day-ahead horizon) and its related uncertainty, can be effectively computed also using
well established statistical methods based on long time series of historical data. On the contrary,
the net load forecast needs much more complex methods in continuous evolution that should
take into account the prediction of the meteorological conditions. Indeed, these methods make
use of Numerical Weather Prediction (NWP) and sophisticate machine learning techniques to
forecast wind and solar generation. In any case, the net load forecast leads to lower accuracy
and higher uncertainty with respect to the load prediction, especially at high VG conditions.

As a consequence, the imbalance between the electric demand and the power supply (net load
forecast) and its related costs on the energy imbalance market increases with the growing of
wind and solar penetration. Moreover, also the operating reserves are intrinsic related to the
uncertainty of the net load forecast, since they are the flexible capacity that should be held to
accommodate the day head imbalance. Therefore, large share of VG implies high imbalance
uncertainty and accordingly high amount of reserves. In particular, using the reserves general
classification of Ela et al. (2011) (figure 1), the accuracy and the uncertainty day ahead forecast
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of the net load define the amount of the imbalance and following reserves (reserve related to

the load following).
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Figure 2: General classification of operating reserves from [1].

Moreover, given a certain imbalance uncertainty, the reserves “reliability” is the probability that
a given amount of reserves will be able to compensate the current imbalance as well as the
“risk” is the probability that the allocated reserves are not enough to balance the grid (1-
reliability). For following reserves usually, a 5% of risk is assumed as an economic cost-benefit
threshold. The rare but sever imbalance events that cannot be arrange by the following reserves
should be compensate by the ramping reserves. The amount of ramping reserve is related to
the expected risk as well to errors in following reserve assessment. These errors are due to lower
uncertainty than expected i.e over confidence of the method used for reserve estimation.

For the above mentioned reasons, grid observability can be evaluated also in terms of net load
forecast accuracy and uncertainty.

2 State of the art

2.1 PV forecasting to enhance grid observability

Whereas there is an extensive body of literature on load forecasting [2, 3], only recently did PV
power predictions become included in these load forecast models.

In [4] the impact of PV penetration on the 15 minutes and 1-hour forecast of a micro-grid net-
load is analysed. Kaur et al. (2016a) analysed the performance of PV power forecasts with
several data-driven methods for hour-ahead net-load predictions in the same micro grid of the
previous work. In (Kaur et al. 2016b) the benefits of using solar forecasting (in term of probability
of imbalance) in the Western Interconnection dispatch energy market was quantified -- authors
compared different data-driven forecast models from 5 minutes to 24 hours ahead (with
different time resolutions) for 1 MW PV generation. Pierro et al. (2018) built up several models
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to predict the day-ahead power transmission at regional level, but in these works no uncertainty
assessment was provided. In [5] the economic valorisation on the Iberian balancing energy
market of the day-ahead imbalance of a single PV plant (1.86 MWp) was computed using a
reference and several forecast models and the value of the accuracy improvement with respect
to the reference was provided. In [6] and [7] the imbalance costs or revenues for the owner of
a single wind and PV farm of 3.6 MW and 960 kWp according to the Italian regulation of the
balancing energy market are computed. Nevertheless, in [7] the prices on the DAM and BEM are
assumed to be constant during the year, therefore the resulting economic evaluation is very
poor. All the above mentioned papers underline the advantage of using accurate PV power
forecasts to achieve energy imbalance reduction and cost saving.

In [8], the economic impact of solar power generation at different grid penetration was analysed
as a function of forecast accuracy for ISO-NE. The authors analysed the costs of operational
electricity generation, electricity generation from the fast start and lower efficiency power
plants, ramping of all generators, start and shutdown costs, and solar power curtailment. From
this analysis, they derived the value of the accuracy improvement of PV forecasting. Similar
investigation on the PV and wind integration into the CASIO electric grid can be found in (Shaker,
Zareipour and Wood 2016). In this paper, the authors simulate different penetration scenarios
and analyse the average supply/demand daily shapes, load and net load factors, duration curves,
volatility, and hourly ramps.

Furthermore, the needs to develop more effective methods to planning reserves that
incorporate the solar and wind uncertainty is well explained in (Bucksteeg, Niesen and Weber
2016, Dobschinski, et al. 2017). Authors claim the transition from static reserve allocation to
dynamic reserve prediction. The first is traditionally obtained by statistical approaches that
produce a constant uncertainty regardless the meteorological conditions, the second can be
achieved by probabilistic methods that take into account the variability of the wind and solar
generation.

Probabilistic methods aim to provide either the probabilistic distribution of the forecast value
or the probabilistic distribution of the forecast errors. The first approach: Probabilistic Power
Forecast (PPF) is focused on informing about the distribution of potential events through a set
of conditional probability density functions or ensemble of a statistically relevant number of
alternative forecasts obtained through one or more models. It provides at the same time the
best forecast (the expected or median value of the distribution) and the forecast uncertainty.
The second approach: Probabilistic Errors Forecast (PEF) is based on a previously computed best
forecast (also called “point” or “deterministic” forecast). It infers the distribution of the forecast
errors from historical data to provide the prediction intervals in which the actual value is
expected to lie with a certain level of confidence. Both the approaches can be classified as
parametric or non-parametric methods depending on if a similarity between the distribution of
the forecast and a known parametric distribution is assumed or not.

The application of these methods for a better operating reserve assessment in case of high wind
penetration has been explored in the recent year. In the notable work (Ela, Milligan and Kirby
2011), a comprehensive review of large-scale renewable integration studies and academy
researches, aimed to evaluate the effects of large wind generation on operating reserve and to
explore new probabilistic methods for reserve assessment is reported. In [9, 10, 11, 12, 13], the
authors compared traditional methods for reserve assessment with dynamic reserve allocation
obtained by probabilistic approaches. They considered several case studies in Europe, USA and
Canada, analysing the reserves required at different wind penetrations and forecast horizon.

Unlike the wind integration issue, how to incorporate probabilistic solar prediction into the net
load forecast model is still not deeply investigated. Zhang et al.(2015) used the prediction of
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solar forecast errors to compute the additional day-ahead reserve due to solar penetration and
to assess the improvement in forecast accuracy that should be reached to obtain the 25% of
costs reserve reduction. They analysed two regional case studies: the area under control of
Independent System Operator—New England (ISO-NE) and the area controlled by the California—
ISO (CAISO), and considered multiple forecast time horizons: 1-2 day ahead, 1-4 hours ahead
and 15 minute ahead according to the local BEMs. In the project “A Multi-scale, Multi-Model,
Machine-Learning Solar Forecasting Technology” that involved several electrical utility the need
to use the uncertainty of the PV power forecast to quantify the increasing in the operating
reserve due to the distributed generation was pointed out [14]. Nevertheless, these two studies,
take in to account only the impact of the PV generation uncertain on the expected energy
reserves regardless the uncertainty of the load forecasting. Van der Meer et al. (2018a), in their
notable work, built up several probabilistic models using two different techniques to predict the
solar power, electricity consumption and net load of a PV distributed fleet in the city of Sydney.
They analyse the effect of seasons, aggregation and penetration on the prediction intervals of
PV power, load and net load. Wu et al. (2015) estimate the economic impact on energy reserves
of wind and solar uncertainty and variability for a utility in the southwestern United States
(Arizona Public Service Company).

2.2 Regional PV forecast models

The starting point for Regional PV power estimation and forecast is the so-called bottom-up
strategy. It consists in the estimation or forecast of all the distributed PV plants in the considered
area. Nevertheless, it requires a large computational and data handling effort. Indeed, models
should be implemented for each plant (even if the distance between two plants is lower than
the spatial resolution of the irradiance or NWP data) and then the models should run for all the
distributed systems. Moreover, when there are not enough historical data to train machine
learning algorithms, a physical based models must be adopted. Nevertheless, it often happens
that some system information needed for this physical models set up (such as orientation and
tilt or module characteristic) are unknown. For these reasons, ongoing research is focused on
upscaling methods that allow the estimation and forecast of distributed power of aggregates of
PV plants through simplified approaches that reduce the computational effort and require less
information on the PV fleet. For example, in [15] was proposed four different up-scaling method
that can be used according to different plant information and data availability scenarios. In [16]
was developed a data-driven model for regional PV power forecast that only requires the whole
installed capacity and the historical PV generation in the controlled area for model’s training.

Upscaling methods are mainly based on the selection of a subsets of PV plants with a power
output that can be considered representative of the regional photovoltaic production. Then the
forecast of the subsets power output are rescaled taking into account the subsets capacity and
total capacity to obtain the regional prediction.

Several strategies has been developed in order to select the representative subsets. In (Lorenz,
Hurka and Karampela, et al. 2008), two different random selection were tested. In the first the
spatial distribution of the selected subsets should reflect the regional distribution while in the
second just a uniform distribution of selected system was chosen. In (Lorenz, Scheidsteger and
Hurka 2011) and (Lorenz, Heinemann and Kurz 2012) a subsets selection was proposed so that
their distribution with respect to the location, installed capacity and system characteristics
(plane orientation and technology) reflects the distribution of the whole ensemble. In [15] for
the selection of representative subsets a stratified sampling method according to installed
capacity and PV system location was developed.

Another upscaling method considered the PV generation in the controlled area as it was
produced by a virtual PV plant. Then, the power output of this virtual plant is directly forecast
by machine learning algorithms as reported in [16].
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Only recently, a hybrid upscaling strategy between the two above mentioned approaches has
been tested. Instead of sampling strategy, clustering methods were used for spatial grouping of
PV plants and then the power output of each cluster is considered produced by a virtual PV plant
and directly predicted by deterministic or machine learning models [17].

Moreover, the accuracy of regional forecast is greatly improved with respect to single site
forecast due to the “ensemble smoothing effect”. This effect is related to the forecasting errors
correlation, the PV capacity distribution and the number of systems in the controlled area. The
errors correlation between sites decreases with the distance (or with the size of the area) thus
the regional forecast accuracy can be improved even by 50% with respect to the accuracy of
single plant power prediction. For this reason, the performance of each site forecast only slightly
affects the performance of regional prediction so that up-scaling methods can achieve similar
accuracy of the bottom-up approach.

As mentioned in the previous subsection, to improve reserves assessment, it not regional PV
forecast uncertainty should be provided. There for a probabilistic methods has to be adopted.

In the last few years, these methods were developed and tested not only to predict wind
generation but also for solar irradiance and PV power forecast. Considering day ahead
predictions, one of the first notable paper that deals with forecast uncertainty was (Lorenz et al.
2009). The authors adopted a parametric PEF methods, predicting the standard deviation of the
irradiance forecast errors as a function of the sun elevation and of the forecasted clear sky index
and the forecast errors are assumed normally distributed. The standard deviation was
statistically computed on the fly using a moving windows of 30 days of historical data. Similar
approach can be found in (Marquez and Coimbra 2011) for solar irradiance predictions (global
and direct components) and in [18] for site PV power forecast. In these works, authors predicted
the standard deviation of the forecast errors using a neural network model but still they
assumed the normal error distribution. The same method was adopted, in [19] to compute the
regional PV power prediction intervals but, in this case, a correction that took into account the
deviation of the PDF of the errors from the normal distribution was built up. Ohtake et al. (2014)
also adopted PEF approach based on statistical method. They constructed a look-up table of the
forecast errors between the NWP (from the Japan Meteorological Agency) and ground
measurements to provide the prediction intervals of the day-ahead irradiance forecast of a
region in Japan. In [20], two parametric PEF methods to predict the day-ahead generation of
two single PV plant were developed. These methods were based on the assumption that, for a
given hour of the previous 60 days similar predicted meteorological conditions would produce
similar forecast errors. The PDF of these errors was then fitted by a Gaussian and Laplacian
distributions minimizing the maximum likelihood. In the same way, Fonseca et al. (2018) built
up three parametric and one non-parametric methods to predict the generation of a PV fleet. In
this case, Gaussian, Laplacian and hyperbolic distributions were compared with the
experimental PDF derived directly from the historical data. In (Bacher, Madsen and Nielsen
2009), a non-parametric PPF approach was applied. They built up a quantile regression model
to predict 1-36 hours ahead generation of a PV fleet, avoiding any assumption on parametric
power distribution. Two quintiles regression models that make also use of NWP ensemble (from
Meteo France’s ensemble NWP system) were tested and compared in [21]. Linear quintile
regression model and quantile regression forest were built to provide the 2-day ahead power
forecast of PV fleets in two French counties. Quantile regression forest was also used in [22] to
predict the day ahead power generation of five utility scale PV plants. The same authors in [23]
compared the non-parametric method (previously developed) with a parametric method based
on a physical model that derives the PV power from the NWP variables. Nevertheless, in this
paper is not clear how prediction intervals of the non-parametric approach have been
computed. Sperati et al. (2016) used 51 NWP forecasts coming from the Ensemble Prediction
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System of ECMWEF to predict the PDF of the power generated by three different solar farms in
Italy with a forecast horizon between 0 and 72 hours ahead. A Neural Network model transforms
each NWP forecast in PV power. Then, two different statistical methods are used to calibrate
the 51 power forecasts and finally the experimental CDF is computed using the calibrated
ensemble.

Since the majority of works appeared in the last four years, the probabilistic methods for solar
power generations forecasting is still considered a not completely mature technology. Indeed,
only recently in literature a common agreement on the metrics to assess the accuracy of the
different methods is coming out. Besides, the two approaches PPF and PEF usually require the
use of different key performance indexes. Moreover, unlike the point forecast, only few of the
abovementioned works compute a reference probabilistic model and, in any case, there is not a
well established persistence model that can be used to compare different probabilistic
approaches. Zamo et al. (2014b) adopted the climatological persistence even if it is not clear
how they computed this benchmark model. Sperati et al. (2016) and Fonseca et al. (2015) used
a persistence model based on the power distribution generated, in a given hour, during a certain
amount of previous days. For these reasons, is still very difficult to compare the different
probabilistic approaches when tested in different locations and years and/or different
performance metrics are used.

An overview on the techniques and metrics used in probabilistic solar forecasting can be found
in the excellent reviews (Van der Meer, Widén and Munkhammar 2018b, Yang, et al. 2018).

3 Probabilistic Net load forecast methods for imbalance and reserve
assessment

Eurac Research institute developed several forecasting methods to predict the net load of a part
of South Tyrol Region under the control of a local DSO (Edyna Srl). These methods were used to
assess the imbalance and the reserves of the controlled area at different levels of PV penetration
and to quantify the energetic and economic benefit derived by the use of accurate PV forecast
with respect to simple statistical approaches. These reference approaches are based on a
persistence and smart persistence models denoted by (P and SP). The PV generation forecast
was obtained by a novel upscaling procedure.

The developed net load probabilistic methods follow a probabilistic error forecast approach
(PEF) so that it make use of point prediction.

The net load point forecast require the prediction of the load and the PV power, since the
net load results from the difference between the load and the distributed PV generation:

PNetload = Pload — Ppv 1)

The load forecast is obtained using a Seasonal Auto-Regressive Integrated Moving Average
model (SARIMA), [24]:

[0 (B) V¢ @p(B) VO] PEAMA(h + 1) = c + [04(B) Oq(B)] e(h + 1) (2)

where Py y,4(h) is the load time series, e(h) is the forecast error at the time t (supposed a
white noise), s =168 is the weakly seasonality period, B Py y,q(h) = Pygaq(h — 1) is the back
shift operator and each term of equation 6 represents a single model or operation.

The upscaling method used for the day-ahead power forecast (with hour granularity)
consists of three different steps. First, an unsupervised clustering algorithm (k-mean) is
used to group the PV plants and to find the best representative points of each cluster
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(centroids)®. Then the numerical weather prediction data, centered on the centroids, is pre-
processed with the principal component analysis (PCA). Finally, to predict the regional PV
generation and then an ensemble of artificial neural networks (ANNsE) that makes use of
the pre-processed NWP, is applied.

The model, named NN, can be expressed as:
PAN(h + 24 | X) = fAWAFO(WDX + bD) + b@) (3)

where (i = 1, 2) is the layer index, X is the input features vectors, f are transfer functions
while the weights matrices (W®) and the bias (b® ) are the coefficients that should be
estimated during the training and validation phase, PNN is the day ahead PV power forecast
(normalized by the installed capacity).

The PV forecast upscaling method is summarized in Error! Reference source not found..
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Figure 3: Upscaling method for the regional PV power forecast.

Finally, the forecast of the net load, denoted for brevity ARINN, is simply obtained from equation
(1):

Plétlaa(h + 24) = PiggM4 (h +24) — P, PRy (h + 24) (3)

where P, is the installed PV nominal capacity.

3.1 Net load probabilistic forecast

To evaluate the reserves, two different forecasts of the net load should be provided:

or or or . .
PA{etlod_up and P,{etlod_low. The power forecast upper bound (Plfetlad_up) is the maximum
Pfor

Netlod_low
downward regulation. Fixing the reserve reliability at 95%, as in [25, 14, 26] , these patterns
define the prediction interval (Pl) in which the net load of the next day can be found with 95%
of probability, i.e. the forecast uncertainty associated to the 95% of nominal confidence (PINC):

expected upward regulation while the lower bound ( ) is the minimum expected

for 1 for _
PrOb(PNetlod_up = PIfIlgltf?o%i_low = PNetlod_ZOW) =0.95 (4)

The energy reserve depends on the forecast accuracy and on the procedure used for the Pl
computation. In this sub section, the methods for Pl assessment are described.

Two different non-parametric probabilistic methods for Pl computation were built. These non-
parametric methods are based on the ARINN net load forecast, on the prediction of the standard
deviation of the forecast errors and on the forecast of experimental cumulative distribution of
the errors. Finally, following the multi model approach tested in [18], an optimal blending of the
two probabilistic forecast were tested.

1. The fist method denoted by ARINN/E consists in two forecast steps:

computation net load point forecast;
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computation the Pls by the prediction of experimental CDF of the forecast error from
historical data.

This procedure leads to a Pl computation model that can be expressed by the following
equation:

ARINN/E
P /

Netload up (t T 24) = Plationa (t + 24) — Qi-ncy/2
pARINN/E

Netload low ( + 24) = Piatioaa (t + 24) — Qi4ncy) 2

where PARINN. is the ARINN forecast, Q(1+Ne)/2 are the quantiles of the eCDF of order (1 +

NC)/2 and NC = 0.95 is the nominal confidence of the PI.

(5)

2. The second method denoted by ARINN/S allows a dynamic PI computation and consists in
three forecast steps:

computation the net load forecast;
prediction of standard deviation of the error (oyy,);

computation the Pls by the prediction of experimental CDF of the normalized forecast
error.

This Pl computation method, can be expressed as follows:

ARINN/S

PNetload/_up (t +24) = Piibaa(t +24) — oyy Qui-nc))2 6)
ARINN/S

PNetloac{_low(t + 24) = Plégtlllggd (t + 24’) — OnL Q(1+NC)/2

where P{RINN is the ARINN forecast, oyis the predicted standard deviation of the forecast

errors, Qc1+nc)/2 are the quantiles of the eCDF (e/oyy,) of order (1 + NC)/2 and NC = 0.95
is the nominal confidence of the PI.

3. The third method, denoted by ARINN/O is an optimal blending of the two previous models. It
can be express as:

ARINN/O o ARINN/E ARINN/S
PNetload_up (t + 24) = min {PNetload_up (t + 24)' PNetload_up (t + 24)} (7)
ARINN/O _ ARINN/E ARINN/S
PNetload_low(t + 24) = max {PNetloaleW (t + 24')'PNetload_low(t + 24)}

4 Regional area of interest

In the area of interest (Figure 4) there are 1985 distributed plants with a total installed capacity
at the end of 2015 of 67.2 MWp (more than a third of the total installed capacity in the entire
South Tyrol). The 49% of these plants have a capacity lower than 10 kWp, 38% between 10 and
50 kWp, 12% between 50 and 500 and 1% between 500 and 1000 MW. Moreover, photovoltaic
is the only variable renewable energy source providing the 6.9% of the annual electric load (73

GWh over 1054 GWh), a penetration level almost equal to the national one (7% in 2015).
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Therefore, this is a very good real case to study the effect of distributed PV generation on the

net load variability and reserve.

South Tyrol Region | ————

Figure 4: Geographical distribution of the PV plants (red dots) within the area of
interest (around 800 km2).

5 Metrics to evaluate the accuracy and the uncertainty of the forecast

5.1 Accuracy metrics

Tablel reports the main metrics used in forecast literature to evaluate the models’ accuracy.
Table 1: Accuracy metrics.

Name Acronym and formulae

Forecast error [MW] ep = (Xfor(h) — Xactual(h))

COV(Xfor, Xactual)

O xfor O yactual

Pearson correlation [MW] CORR =

Root mean square error [MW]

Mean absolute error [MW n_.le
W] wag = Sheilen

(mean absolute imbalance)

n
Mean bias error [MW] MBE = Yh=1(en)
n
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Skill score [%] SSref) = 100 (1 - MAE forecast model

R,
(relative imbalance reduction) MAETeference mode

where X is the considered variable, while n is the number of the yearly hours for the load or net
load and is the number of yearly sun hours for PV power. The key performance indexes in MW

will be also expressed in % of peak power since DSO and TSO usually adopt this unit.

It should be remarked that the MAE is exactly the yearly average of the absolute imbalance
between the actual net load and the forecasted that should be accommodate by the predicted
power reserve so that it can be considered the most appropriate metric to evaluate the forecast

accuracy.

The skill score evaluates the accuracy improvement of the forecast model with respect to the
reference model. In the case of net load forecast, it represents a measure of the absolute
imbalance reduction that can be achieved using the forecast of a specific model instead of the

reference prediction.

5.2 Uncertainty metrics

Table 2 reports the metrics used to evaluate the models’ uncertainty.
Table 2: Uncertainty metrics.

Name Acronym and formulae

Prediction interval
coverage probability
(%] .
(should be equal to PICP =100 @
the expected reserve
valiability)

Prediction interval
(X, () = X[ (m)

average width [MW] PIAW = low
n
(mean reserve)
Average width interval n_ 5;;‘11 (Xactual (h) — Xigr(h)) + é}llow (Xl};?; (h) — xactual (h))

AWID =
deviation [MW)] 2:1(5111@ + 6fllow)




FESR 2014-2020 - INTEGRIDS Deliverable D6.1

low

Max width interval MWID = max {max{é‘#p (xactuat(h) — XZZST (h))}h' max{8;™" (Xfor (h)

deviation [MW] — Xxactual(py)} }
h

where X is the considered variable, while n is the number of the yearly hours for the load or net

load and is the number of yearly sun hours for PV power. &y, S;fp, 6}1"‘” are tree Boolean

functions defined as:

low

0 if Xeual(n) g (X1 (h), X45" (W)Y

low

{ 1 if xeetual(h) € (X1 (h), X1y (W)}

SUP — 1if xactual(py > Xigr(h) . }IOW _ 1 if xactual (p) <Xl};¢‘);(h)
h 0 if xactual(p) < XI/:;’T(h) 0 if xactual(p) > le;?,:(h)

Also in this case, the key performance indexes in MW will be also expressed in % of peak power.
The PICP if the observed frequency of actual data that falls inside the prediction interval.
This metrics measure the reliability of the prediction interval estimation since, by
definition, the PICP should be equal to the nominal confidence (PINC) that is the reserve
reliability (95% in this case). The ACE represents the PICP deviation from the expected
PINC, so that low ACE means high PlIs reliability (since the risk provided by the model is
equal to the expected ones). The PIAW represents the average uncertainty that is the
average yearly reserve needed to overcome to the imbalance with the 95% of
probability (5% of risk). Thus, this is the more appropriate metrics for reserve
assessment.

Finally, the two new metrics AWID and MWID were introduced to measure the average
and the maximum power that exceeds the expected reserve. This power should be
provided by ramp reserves using high response generators able to rapidly increase or
decrease their production. Also in this case, low PIAW and AWID and MWID are
desirable, but low PIAW usually leads to higher deviations. Nevertheless, if enough high
response capacity is available, lower PIAW are preferable since it brings to a lower prices

of the dispatchable power on the balancing energy market.
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6 Results

This section has been divided in three subsections. The first reports the analysis of the accuracy
of the forecast models. In the second, the uncertainty of these forecasts is discussed in detail.
Then, the benefit in the use probabilistic approaches in the following reserve assessment are
pointed out. In the third, the dependence of the accuracy and uncertainty from the PV

penetration is analyzed.

6.1 Forecast accuracy

The accuracy of the PV power forecast together with the accuracies of the respective persistence
and smart persistence models are reported in Table 3. In this case, the smart persistence model
achieved a lower RMSE (as expected) but a slightly higher MAE with respect to the simple
persistence. The forecast model (NN) describe in section 3, reached a RMSE 7% and a MAE 4%
while the reference models obtained a RMSE around 11% and a MAE of 7%. The skill score with

respect to MAE of the persistence forecasts is around 40%.

Table 3: Accuracy of the day-ahead PV power forecast (in brackets the values are reported in %

of the maximum power)

PV forecast accuracy

model CORR PEAK RMSE MAE MBE ssP Ss*P

(1 MW] (MW] (MW] (MW] (%] [%]

46 (7% 0.0
P 082 672 815 (12%) 8 ) 0 (0%)

49 (7% 0.0 (0.1%
SP 083 672 767 (11%) 3 ) 4 ) 5.4

28 (4% 0.1 (0.3%
NN 094 672 466 (7.1%) 2 ) 9 ) 3938 42.8

Lorenz achieved a PV forecast RMSE of 4.1% - 4.3% for areas around 100 and 200 103 km? (Lorenz
et al. (2011)) while Fonseca obtained an RMSE of 6% - 7% for areas between 30 and 70 103 km?
(Fonseca et al. (2014) and (2015)). Considering that the accuracy of the regional PV forecast
increases with the size of the controlled area, in [19]) was proved that the RMSE of 7.1%

obtained for an area of 800 km? can be considered inside that “state of the art” range.
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Table 4 shows the accuracy of the different models used for load and net load day-ahead
forecast.

Table 4: Accuracy of the models for the day-ahead forecast, load and net load.

Load forecast accuracy

Model Load peak [MW] CORR RMSE [MW] MAE[MW] MBE[MW] SS°[%] SS*[%]

P 200 0.96 8.7 (4.4%) 59 (3%) -0.8 (-0.4%) 0.0 0.0
SP 200 0.97 7.4 (3.7%) 4.8 (2.4%) 0.1 (0.1%) 19.6 0.0
SARIMA 200 0.97 7.4 (3.7%) 4.4 (2.2%) -0.6 (-0.3%) 26.4 8.4

Net load forecast accuracy

Model Load peak [MW] CORR RMSE [MW] MAE [MW] MBE [MW] SS°[%] SS*°[%]

P 200 091 11.9 (5.9%) 8 (4%) -0.8 (-0.4%) 0.0 0.0
SP 200 094 9.7 (4.8%) 6.3 (3.2%) 0.2 (0.1%) 20.5 0.0
ARINN 200 0.96 8.1 (4%) 4.8 (2.4%) -0.7 (-0.3%) 39.4 23.8

Since the load variability mainly depends on the monthly changes of the electrical demand, the
day-ahead prediction can be effectively obtained also by the use of simple statistical
approaches. Indeed, the simple persistence model produces MAE of 3% of the load peak. The
SP, that it similar to the one actually used by the local DSO, obtains a MAE of 2.4% of the load
peak, improving of almost 20% the accuracy of the P model (557=19.6%). The more sophisticate
time series model (SARIMA) achieves to a mean absolute error of 2.2%, improving the SP
performance of only 8.4% (SS°°=8.4%).

In the case of the net load forecasting, the accuracy of P model decrease of 25% with respect to
the performance of the load forecast. The persistence imbalance (MAE), with the actual level of
penetration, is 4% of the load peak. The SP that takes in to account the solar variability by a
simple smart persistence model, achieves to an imbalance of 3.2%, obtaining a performance
improvement with respect to the P model similar to the one obtained in the load forecasting
(SSP=20.5%). The ARINN model that could benefit of more accurate load and PV power
predictions, achieves to an imbalance of 2.4% of the load peak. The improvement on the SP
accuracy (SS°F) is now 23.8%, almost three times the load forecast skill score (8.4%).

Thus, to predict the net load, an accurate forecast of the solar generation become essential,
even with the 7% of penetration. The ARINN model almost completely removes the effect on
the net load forecast of solar variability, obtaining a prediction accuracy (2.4%) very similar to
the performance of the load forecast model (2.2%).

6.2 Forecast uncertainty
Table 5 shows the uncertainty key performance indexes achieved by the different probabilistic

methods to predict PV, load and net load power.
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Table 5: Uncertainty of PV, load and net load forecast models.

PV uncertainty

Method PV peak [MW]  PICP[%] PIAW[MW] AWID[MW] MWID[MW]
NN/S 67.2 95.1  16.0 (23.8%) 2.0 (3%) 152 (22.6%)
Load uncertainty
Method Load peak [MW]  PICP[%] PIAW [MW] AWID[MW] MWID[MW]
P/N 200 95.4 359 (17.9%) 6.7 (3.3%) 46.6 (23.3%)
SP/N 200 95.9  34.0 (17%) 7.8 (3.9%) 36.4 (18.2%)
SARIMA/N 200 93.9  32.6 (16.3%) 8.8 (4.4%) 44.7 (22.4%)
Net load uncertainty
Method Load peak [MW]  PICP[%] PIAW [MW] AWID[MW] MWID[MW]
P/N 200 93.7 473 (23.7%) 8.8 (4.4%) 40.4 (20.2%)
SP/N 200 94.1 415 (20.7%) 7.3 (3.7%) 39.3 (19.6%)
ARINN/E 200 95.9  35.8 (17.9%) 9.4 (4.7%) 54.9 (27.4%)
ARINN/S 200 95.7  35.0 (17.5%) 7.2 (3.6%) 44.7 (22.4%)
ARINN/O 200 94.1  28.0 (14%) 8.0 (4%) 549 (27.4%)

The PV forecast method (NN/S) provides a very reliable prediction interval with 95.1% of PICP
(almost equal to the nominal confidence). The PIAW is 23.8% of the peak power so that the
additional following reserves due to the solar generation are more than three times the PV
imbalance (6.9%). As stated in section 2.2, probabilistic PV power forecast cannot be considered
a complete mature technology so that it is quite difficult to compare our results with other
reported in literature. Nevertheless, from Table 6, it can be noted that the developed method
seems a promising approach.

Table 6: Comparison of day-ahead probabilistic error forecasting methods (PEF)
available in literature in the field of irradiance and PV power predictions.

Reference Variable Approach PINC [%] PICP [%] PIAW
predicted [% of peak
power]
regional parametric
(Lorenz, et al., 2009) GHI PEF 95 91 -
non
parametric
(Ohtake, et al., 2014) GHI PEF 80 93 -
single
plant PV parametric
(Pierro, et al., 2016a)  generation PEF 75/95 86/97 -
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single
plant site
PV parametric 85/90/95/ 86.9/91.3/95.3/ 24/26/31.5/
(Fonseca, et al., 2015) generation PEF 97.5 97.7 33.5
parametric
PEF with
regional non
PV parametric

(Pierro, et al., 2017) generation correction 75/85/95 76.2/87.6/97.2

parametric

and non
PV fleet parametric 86.9/91.3/95.5/ 23/26.8/32.3/

(Fonseca et al. 2018)  generation PEF 85/90/95/97.5 97.7 38.5

The reference load forecast methods (P/N and SP/N) provide a PICP of 95.4% and 95.9% (both
slightly under confidence) with a PIAW of 17.9% and 17% respectively. The SARIMA/N
probabilistic forecast is over confidence with a PICP of 93.9% and a PIAW of 16.3%. It is should
be noted that the SP/N forecast, despite the higher PICP requires a lower ramping reserve with
a MWID of 18.2% compared to the 22.4% of SARIMA/N predictions. Thus, for the assessment of
the load reserves, the SP/N and the SARIMA/N methods show alternative advantages. The first
is more reliable, with lower ramping reserves while the second predicts lower following
reserves.

With the actual solar penetration, the reference methods (P/N and SP/N) for the net load PI
assessment are both over confidence with a PICP of 93.7% and 94.1% and achieve a PIAW of
23.7% and 20.7%. The ARINN/E and ARINN/S methods are instead under confidence with 95.9%
and 95.7% of PICP and achieves an average uncertainty PIAW of 19.9% and 17.5% respectively.
The optimized blending method ARINN/O, even if it is slightly over confidence with 94.1% of
PICP, provides a notable reduction of the uncertainty with a PIAW of 14%. For the optimized
method a lower PICP was expected since the ARINN/O incorporate all the interval deviation of
the two ARINN/E and ARINN/S methods. Nevertheless, the fact that with a small loss in reliability
(less than 1%) the ARINN/O achieves a such lower PIAW indicates that both the ARINN/E and
ARINN/S methods produce uncertainty underestimation during the same hours. It should be
noted that all the ARINN methods provide a MWID higher than the SP reference method.

The outperforming methods are the ARINN/S and ARINN/O with alternative advantages. The
first, is very reliable and reduces the following reserves with respect the reference methods (P
and SP) of 26.1% and 15.7% providing just a small increase of the ramping reserves from 39.3%
to 44.7% (MWID). The second provides a greater risk and higher ramping reserve of 54.9%.
Nevertheless, the ARINN/O predicts much lower following reserves with a reserves reduction of
40.9% and 32.5% with respect the reference methods (P and SP) (almost the double of the
ARINN/S method).
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(a) Netload(ARINN/S)

saved reserve with respect to the reference SP/N method
Il cnergy reserve

Figure 5: Monthly average of the daily following reserves and reserve reduction obtained by the use of the ARINN/S
and ARINN/O probabilistic forecast instead of the SP/N prediction.

Figure 5 shows the saving in reserve that can be achieved using more accurate probabilistic
methods instead of traditional statistical approach such as SP/N.

In conclusion, while in absence of solar generation the SP/N could provide an acceptable reserve
estimation (see load uncertainty in Table 5), at the actual level of penetration more sophisticate
methods become essential to limit the following reserve (see net load uncertainty in Table 5).

6.3 Analysis of forecast accuracy and uncertainty at different level of solar
penetration

Six different levels of penetration were chosen in this study: no PV generation, 7% (actual
penetration), 15% (double of the actual value), 22% (the value expected from the Italian
Strategic Energy Plan for Italy at 2030), 30% (the level that it is usually assumed as a critical value
for the hosting capacity) and finally the 45% (corresponding to the maximum Building
Integration PV capacity in the region?).

Figure 6 shows the values of the key performance indexes of the forecast methods at different
solar penetration.

The absolute imbalance between the actual and predicted net load change (MAE) of the models
P, SP and ARINN grows from 4%, 3.2% and 2.4% of the load peak at the actual penetration to
8.8%, 7.2% and 4.6% at the 45% of penetration (Figure 6 (a)).

2 EURAC research institute, solartirol, http://webgis.eurac.edu/solartirol/
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Figure 6: MAE, PICP, PIAW, AWID and MWID vs PV penetration.

At the different penetration level, almost all the methods P/N, SP/N, ARINN/S and ARINN/O are
over confidence with PICP lower than the expected reliability (95%). Only the ARINN/S method
shows a higher reliability when the penetration is different from zero (Figure 6 (b)). The average
following reserves (PIAW) estimated by the four methods increase from 23.7%, 20.7%, 17.5%
and 14.0% to0 96.2%, 78.7%, 32.7%, and 28.5% when the penetration grows from the actual level
to 45%. In particular, it should be noted that, at penetration greater than the actual the
difference between the PIAW obtained by the P/N and SP/N methods and by the ARINN/S and
ARINN/O methods increases dramatically (Figure 6 (c)). Also the average and maximum ramping
reserve (AWID and MWID) obtained by the reference models are always higher than the ones
achieved by the probabilistic approaches when the penetrations is greater than 7% (Figure 6

(d)).

7 Forecasting conclusion and outlook

The Eurac institute studied the impact of the distributed solar generation on the observability
of the power distribution grid from the point of view of the accuracy and uncertainty of the day
ahead prediction. In this contest, higher grid observability means lower imbalance between the
electric demand and the power supply (net load prediction) and lower following reserves that
should be held for the next day to accommodate this imbalance and stabilize the grid frequency
and voltage.

The study was performed on an area of the South Tyrol region under control of a local DSO using
real load and PV generation data with an hour granularity (year 2015). In the considered area
the PV generation provided the 7% of the yearly electric demand and solar is the only variable
energy source. Therefore, this is a good case study for the purpose of the work.

It was proved:

In absence of PV generation, the electric demand can be predicted with an acceptable accuracy
and uncertainty also with simple statistical method based on historical data. Thus, this method
generates reasonable values of imbalance and reserves. In particular, the statistical method and
a more sophisticate probabilistic approach (that make us of more accurate PV forecast) shows
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alternative advantage. The first obtains a more reliable following reserve estimation (i.e. a risk
lower than expected) and a lower need of ramping reserves. The second achieves to a lower
imbalance and following reserves.

Also with only the 7% of PV penetration, imbalance and reserves predicted by statistical forecast
method grows considerably because of the solar generation. To contain imbalance and reserves
the use of the probabilistic approach provided sensible advantages. It reduces the imbalance of
24% and the following reserves of 32%. Nevertheless, also in this case, the probabilistic model
is slightly less reliable and forces the use of higher ramping reserves with respect to statistical
approach.

At higher level of PV penetration, the use of more accurate PV and net load models becomes
essential to limit imbalance and reserves. Indeed, with the grows of the solar penetration,
imbalance and reserves obtained by statistical approach increases dramatically. In this case, the
probabilistic approach will be always the best methods both in terms of imbalance, following
reserves reliability, following and ramping reserves amount.

Future works will be to extend this study to the whole Italy using the data provided by the Italian
TSO (Terna). Thus, the impact of solar generation over the Italian imbalance will be evaluated
for different PV penetration levels and the energetic and economic benefit in using accurate
forecast methods will be quantified.

8 Power Systems observability and synchronized measurements

In this paragraph, we introduce a more formal definition of observability in power systems
context connected to the state estimation (SE) practice. We briefly introduce what state
estimation and how the synchronized measurements can help to improve observability and
accuracy for SE.

8.1 State Estimation and observability

In order to identify the current operating state of the system, state estimators facilitate accurate
and efficient monitoring of operational constraints on quantities such as transmission or
distribution line loadings or bus voltage magnitudes. These quantities provide a reliable real-
time data base of the system for security assessment functions to analyse contingencies and to
determine any required corrective actions [27].

The state estimators include different functions such as [27]:
e Topology processor
e QObservability analysis
e State estimation solution
e Bad data processing
e Parameter and structural error processing

The observability analysis is the pre-requirement for the unique state estimation solution. In
particular, it determines if the available measurements in the system are enough to obtain the
state estimation solution. Moreover, this type of analysis identifies the unobservable branches
and the observable island in the system if any exists.
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Figure 7 — State estimation inputs and possible applications

To better explain this concept let us consider a network composed by N buses and B lines.
Generally, the state of the network is modelled by x = [, VT]T where 87 is the vector of the
voltage phasor angles at all buses and VT is the vector of the N bus voltage magnitude. In
general, the state of the network can be observed through the well-known measurements
model [27] reported below:

_Pflow_
Qflow
Pij
7=h) +e,=| U e,

0
|

L B
Where h(x) is a nonlinear function of the state variables; Pr,,, and Qf;,, are the real and
reactive power flowing through the network; P;;,; and Q;,; ate the vectors of real and reactive
power injected at each bus; V and 0 are identity functions of the stateand I and f are the
magnitude and phases of the line currents. The vector &, includes all the measurement
uncertainty contributions. The explicit expression of these measurements related to the two-
port m-model of network branch (as reported below) are available in the literature [27].

-
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Figure 8 — Two port nt-model of a network branch [27].

In practice when the set of available real-time measurements is sufficient to allow a calculation
of the system state vector, the system is observable, otherwise is unobservable.

The typical state estimator is based on Weighted Least Squared (WLS) algorithm and well-
described in [28]. When the WLS definition of the system state is given, the measurements
system in (X) should have N-1 measurements available in order to be solved, otherwise the
system is not observable, and the solution cannot be found. When this happen, additional
meters may have to be placed in particular locations. Even if the mathematical representation
and the concepts behind the state estimation and observability are essentially the same for
transmission and distribution systems, the structure and the observability is very different.
Indeed, transmission systems are characterized by few nodes and lines connected in a meshed
topology where the number of measurements devices are typically enough to estimate the state
of the grid. The classic state estimation has been conceived for the transmission system, where
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the transmission system operator (TSO) based on the data collected into the SCADA are able to
estimate online the voltage magnitude and angle in each node. Conversely, the distribution
systems present several nodes higher than the number of available meters, they have usually a
radial topology and an increasing number of distributed generations. All these aspects
contribute to make the distribution grids usually unobservable and to do not find the state
estimation solution. For this reason, as reported in [29] it is common at distribution level to use
historical data as additional measurements to achieve the observability requirements. These
data are usually called pseudo-measurements and are affected to high uncertainty contributions
as reported in [29] and can be based on the monthly average values of power meters. Another
possible approach should be based on the use of load or production forecasting to estimate the
values of the power injected or consumed through the grid. In this case the uncertainty related
to the values will depend on the used algorithm and on the time-resolution and horizon of the
forecast.

It has been demonstrated in several work how the measurements accuracy can impact on the
accuracy of state estimation. Since the knowledge of the grid state is used for the major
operation of the grid itself as shown in these pictures inspired by [31] it is clear how better
estimation correspond to a better control and usually to a minor cost of grid management.
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Figure 9 — Schematic representation of monitoring and control centre of electricity grid [30].

For this reason, in the last years, a new instrumentation device, able to provide worldwide
synchronized measurements is playing a key role not only for state estimation but for a
multitude of grid applications.

8.2 Synchronized measurements in power systems

In modern power systems the high increase of RES, the penetration of non-linear loads (such as
electric vehicle) and the introduction of storage for self-consumption or energy balance require
not only dynamic and advanced monitoring and controlling techniques but also frequent and
accurate knowledge of the state of the grid. In the last year these functions have been supported
by the so-called synchronized measurements or better synchrophasor provided by a device
called phasor measurement unit (PMU).

The PMU is an instrument able to measure amplitude, phase, frequency and rate of change of
frequency (ROCOF) of voltage and current waveforms synchronized with a common reference
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time through a GPS receiver and referred to the Universal Coordinated Time (UTC). The first
prototype of PMU has been realized at Virginia Tech around 1980s [32]. At present, PMUs by
different manufacturers may differ in various important aspects. However, the architectural
structure and the general functions are similar, and they are reported in [32]. For completeness,
we report here the signal model and the synchrophasor definition and we remand for additional
details to the wide literature.

Commonly, in AC power system a voltage or current waveform z(t) of nominal frequency f0 (i.e.
50 Hz for European countries or 60 Hz for U.S.) can be expressed as:

z(t) = Acos(2rfyt + a) (9)

Where A is the amplitude and a is the initial phase. This sinusoidal waveform can be represented
through its complex phasor given by

54 e (10)
V2

A synchronized phasor of the electrical signal in (9) is the value Z in at a known reference time
tr synchronized with the Coordinated Universal Time (UTC) [33]. In the synchrophasor Standard,
i.e. C37.118.1, is reported the convention for synchrophasor representation which for simplicity
we report below. On the left, the synchrophasor angle is 0 degrees when the maximum of the
signal occurs at the UTC second rollover, on the right the synchrophasor angle is -90 degrees
when the positive zero crossing occurs at the UTC second rollover. The concept is represented
below in Fig. 10.

=0 =0
(1 PPS) (1 PPS)

Figure 10 — Convention for synchrophasor representation [32].

8.3 Improve PV observability with PMU

As already said, the observability of distribution grid is quite difficult due to the lack of
measurement point with respect to the number of grid nodes. Moreover, at distribution level
there are also the major part

For instance, PMUs can greatly improve state estimation accuracy and observability even in the
presence of PV plants [34]. One feature that has not been well investigated yet, is the capability
of PMUs to exploit more efficiently the available solar energy by optimizing the connection and
disconnection of photovoltaic (PV) plants to/from the grid. As known, the DC/AC conversion
process as well as the injection of PV power into the grid pose delicate issues. At the moment,
one of the main reference documents defining the guidelines to interconnect distributed
generators with the grid is the IEEE Std. 1547 [35], [36]. However, since the Distribution System
Operators (DSOs) are responsible for the stability of a network, the DSO policies are usually quite
conservative, thus decreasing the efficiency of distributed generation resources (DERs). This
problem is emphasized by the few measurement points available in the existing monitoring
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infrastructures. Adding PMUs at the points of common coupling (PCCs) could be instead
beneficial both to improve network observability and to enhance PV power injection
management. Moreover, one of the main protection issues is related to islanding control, which
requires an effective and reliable connection and disconnection of PV sources. Unlike classic
synchronous generators, the PV sources exhibit high-speed response (low inertia) and large
power ramps, even in the absence of transient events [37]. Nowadays the common practice of
distribution system operators (DSO) in case of problems is just PV curtailment, which is a very
conservative and inefficient policy. This approach is also partially due to the lack of
measurement points, which makes the grid observability a challenge. Benefits for islanding
control and for curtailment mitigation can result from the inclusion of PMU into PV inverters as
reported in [38]. As reported in the literature, they can support several applications such as state
estimation and grid observability analysis even in presence of PV generators [39]. Currently, the
inclusion of synchrophasor in PV inverter is a perspective feature but could have significant
advantages to both grid operator and PV owner.
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